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In this paper it is shown that layered double-diffusive convection of a fluid within a 
porous medium is possible. A thin ‘diffusive ’ interface was observed in a Hele Shaw 
cell and in a laboratory porous medium, with salt and sugar or heat and salt as the 
diffusing components. Heat-salt and salt-sugar fluxes through two-layer convection 
systems were measured and are compared with predictions of a model. For the thermo- 
haline system the salt and heat buoyancy fluxes are approximately in the ratio 
r 2: mtn, where 6 is the porosity and r,  is the appropriate ratio of diffusivities. The 
behaviour of the heat flux is explained in terms of a coupling between purely thermal 
convection within each convecting layer and diffusion through the density interface. 
Salinity gradients are important only within the interface. The presence of a ‘diffusive ’ 
interface in the Wairakei geothermal system is postulated. The ratio of heat and salt 
fluxes (that can be estimated from existing observations) through this convection 
system is consistent with the laboratory flux ratio. 

1. Introduction 
Convection of a viscous fluid can be driven by the differential diffusion of two pro- 

perties such as heat and salt when the properties contribute opposing vertical density 
gradients (Turner 1973). In  the laboratory the resulting convection is often charac- 
terized by a number of well-mixed convecting layers, each of limited vertical extent 
and separated from each other by relatively thin density steps. When the lower layer 
is warmer and more saline than the upper layer, transport of salt and heat through the 
‘diffusive ’ interfaces is by molecular diffusion (apart from some turbulent entrain- 
ment). The more rapid diffusion of heat provides a net buoyancy flux to drive the 
convection. In  laboratory experiments (Turner 1965; Crapper 1975; Marmorino & 
Caldwell 1976) the buoyancy fluxes due to salt and heat are in the ratio 0.15 f 0.02 so 
long as the heat flux is not too small. Griffiths (1979) also found that several solutes 
mix through such a heat-salt interface at rates that depend strongly upon the 
individual molecular diffusion coefficients. In  the inverted system (warm, saline water 
over cooler, fresher water with the lower layer again more dense) a thin ‘salt finger’ 
interface develops (Turner 1967). This density interface allows efficient vertical 
transport of the property with smaller molecular diffusivity. 

I n  order to understand the fluxes through the ‘diffusive’ interface in a viscous fluid, 
a model for the interface has been constructed by Linden & Shirtcliffe (1978). They 
considered the boundary-layer flow of high-Rayleigh-number thermal convection in 
the mixed layers. At Rayleigh numbers greater than lo5 (Foster 1971) this convection 
involves the intermittent growth by molecular diffusion of thin buoyunt bouiiciary 
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layers, with the subsequent release of buoyant elements into the convecting layer. The 
boundary layer grows until a local Rayleigh number based upon the boundary-layer 
thickness exceeds a critical value (of order lo3) and, after this time, all of the buoyant 
fluid takes part in convection in the form of thin, two-dimensional plumes. T b  type 
of convection, modified little by the presence of two components, was assumed to 
provide the boundary conditions for the ‘diffusive ’ interface. 

In  the models for double-diffusive interfaces in a viscous fluid it has also been 
assumed that inertial fluid motions are not necessary in order to maintain thin density 
interfaces against spreading by diffusion or salt finger convection. Because the vertical 
density profile through the interface can be discontinuous only if inertial forces are 
present, this assumption is implicit in a boundary condition which states that the 
density profile is always continuous across the interface edges. This is equivalent to 
saying that all of the buoyant fluid and only the buoyant fluid in the boundary layer 
takes part in convection. On the other hand, such interfaces are observed to migrate 
(Marmorino & Caldwell 1976; Schmitt 1979). This implies a net flux of fluid through 
the interface and suggests that nonbuoyant fluid is entrained from the density 
gradient. At larger interfacial Froude numbers, the convection of the mixed layers is 
seen to penetrate the density gradient of the interface and excite interfacial waves. 

Another case of double-diffusive convection - that of layered thermohaline con- 
vection within a porous medium - is studied in this paper. Such convection has not 
previously been considered but might occur, in the ‘diffusive’ sense, within geothermal 
systems if hot brines remain beneath cooler and less saline groundwaters. Both heat 
and salt fluxes could then be significantly different from those given by thermal con- 
vection throughout the whole depth of the fluid and two different chemical environ- 
ments could be maintained. The study of double-diffusive interfaces in a porous 
medium can also add further understanding to the viscous fluid phenomena already 
msntioned. For the buoyancy-driven convection of a fluid within a porous material, 
inertial forces are negligible. The possibility of entrainment of non-buoyant fluid from 
a density gradient into a convecting region is therefore reduced. Flow geometries 
produced by layered convection will also differ from those in visous fluid convection 
as there can be no advection or diffusion of vorticity. On the other hand, thermal 
convection again takes the form of a boundary-layer flow; in this case a t  only moderately 
supercritical values of the appropriate Rayleigh number. 

Current understanding of purely thermal convection is outlined in $2. The results 
will be required in subsequent sections in order to help describe the fluxes through a 
two-layer system. Qualitative laboratory observations in a Hele Shaw cell analogue 
to a porous medium are presented in § 3 and indicate that a thin ‘diffusive’ interface 
can continue to exist on the laboratory time scale. These experiments use salt and 
sugar as the two diffusing components, and show that convection maintains the thin 
density interface against spreading by diffusion. We consider in this paper only the 
case in which potential energy for convection is supplied by the property with the 
greater diffusivity, although a linearized stability analysis (Nield 1968) predicts that 
salt fingers within a porous medium are also possible.? Some preliminary theoretical 
ideas about the fluxes through a ‘ diffusive ’ interface in a heat-solute system are given 

t Porous medium salt fingers cannot easily be studied in the laboratory, where their horizontsl 
length scale is comparable to the grain size of the material. Fingers obeying the viscous fluid 
equations will then form instead. 
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in 5 4. These ideas are not intended to be absolute predictions but are to be compared 
(in 7) with the results of experiments using aporous medium of glaes spheres and heat 
and salt as the Musing components. The experiments and measured fluxes are 
described in 8 6 and 6. Finally the presence of a ‘diffusive’ density interface in a real 
geothermal system is oonsidered in 8 8. 

2. Thermal convection 
For a horizontal layer of saturated porous material of depth H, heated uniformly 

from below, suitable units of length, temperature, pressure, time and velocity are 
H, AT, p o w , / k ,  H ~ / K ,  and K,/H respectively, where po is a mean fluid density, v is 
the kinematic viscosity and k is the permeability. The temperature difference between 
boundaries is AT and the thermal Wusivity is K~ = Km/@c),, where K ,  is the thermal 
conductivity of the saturated medium and (pc), is the volumetric heat capacity of the 
fluid. Two parameters which describe the flow are the Rayleigh number, 

R, = gaATkH/K,v, 

and the Prandtl-Darcy number B = (v/K,) (Hslb), where a is the coefficient of thermal 
expansion, A factor 23-1 multiplies the inertia terms of the momentum equation (see 
Wooding 1967) and we will only consider the limit B + 00 that holds for an ideal porous 
medium. 

Theoretical and experimental investigations of the heat flux at slightly supercritical 
Rayleigh numbers (40 c R, < 200) have given an approximately linear relationship 
between the Nusselt number, Nu, and the Rayleigh number (e.g. Elder 1967). The heat 
flux is then independent of the layer depth. For larger values, R, > 200, empirical heat 
fluxes begin to fall below those predicted by this linear relation. In order to explain the 
observed behaviour, several authors have oonsidered the development of a boundary- 
layer flow at higher Rayleigh numbers. These models and the existing experimental 
results are reviewed by Booker & Hartline (1981). They conclude from a boundary- 
layer scale analysis that 

is the appropriate asymptotic form for large R,,, and that equation (1) also describes 
the existing heat-flux measurements at  R, > 108. At intermediate values of the 
Rayleigh number there is a gradual transition from the behaviour at  small Rayleigh 
numbers to that at  high Rayleigh numbers. In this range (100 c R, < 1000) we find 
that the simple relation 

provides a reasonable fit to the experimental dab .  Although this form cannot give an 
accurate prediction of the heat-flux behaviour, such a simple form will be useful in 
5 6, where it will be seen that the present experiments have thermal Rayleigh numbers 
in the range 200 < R, < 2000. It will also be seen that the thermal boundary-layer 
thickness in our experiments is larger than the individual grain size, so that the medium 
can be considered to have infinitesimal grains when discussing the heat transport (see 
Booker & Hartline). Note that (2) was obtained by Robinson & O’Sullivan (1976) by 
fitting a boundary-layer scale analysis (different from that of Booker & Hartline) to 
the results of a series of numerical experiments over the range 100 < R,,, < 3000. 

Nu x. Rk (1) 

NU = 1*66(Rm/40)f (2) 
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FIGURE 1.  Shadowgraph photographs of a two-solute interface in a Hele Bhaw cell. 
Frames arc at about 1 min intervals and uAS/crAT N 1.2. 



Layered doublediffusive convection in porous media 225 

_.~ - 

FIGURE 2. Shadowgraphs of the interface of figure 1 after the system has run down for 24 hours. 
Scale is in centimetres. Some dye waa placed in the top layer and collected on the interfare just 
before this sequence. Frames are at about 30 s intervals. 
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3. Observations in a Hele Shaw cell 
Convection within a porous medium can be modelled, and more easily visualized, 

in a Hele Shaw cell. The analogy between the two will be valid if the velocity, U, and 
the smallest length scale of the motion, 6, satisfy the conditions b / S <  1, UP/vb<  1 
and Ub2/K6< 1, where b is the distance between the cell walls (Wooding 1960). 

An isothermal, two-layer convection system was established in a Hele Shaw cell by 
placing a layer of sodium chloride (2’) solution (with a concentration of T = 133%,, or 
gramsof solute per kilogram of so1ution)ontoa layer of sucrose (S)solution (S = 246%,). 
This gave an initial ratio of component density steps of PAS/aAT 2: 1-16. The salt has 
a molecular diffusivity approximately three times that of sugar. Each layer was 13 cm 
deep, with b 2: 0.1 cm. In figures 1 and 2 are shown shadowgraph photographs taken at 
several times during an 8-day period as the system ran-down to higher density ratios, 
For individual mushroom-shaped plumes, U N 10-2cms-1 and 6 - 0.5cm. Hence 
b /S  N 0.2, Ub2/v6 - 0-02 and Ub2/K6 - 20, where the diffusivity of both solutes is of 
the order of om2 s-l. Thus the Hele Shaw model tends to break down due to the 
small solute diffusivity, although the momentum diffuses rapidly across the space 
occupied by the fluid. 

The sequence of figure 1 shows highly unsteady motion, with plumes intermittently 
appearing and breaking away from the interface edge. In  figure 2 the system has run 
down to a higher density ratio and only plumes such as those still visible below the 
interface existed before a small amount of dye wa,s injected into the top layer. These 
plumes move slowly along the interface. After the dyed fluid spreads out on the inter- 
face there is first D period in which diffusion is important, then disturbances with a 
small length scale determined by some local criterion are amplified. The dye in the 
shadowgraph of figure 2 (a)  shows only slowly growing, roughly sinusoidal, motions 
with a length scale of 0.5 cm. As seen in figures 2 ( b )  and (c), more rapid motions follow 
and the horizontal length scale of the vertical plumes increases. As in the viscous 
fluid case the fluxes of salt and sugar are determined by the coupling between this form 
of convection and the diffusion through the interface. The flow adjacent to the inter- 
face is also very similar to that predicted and observed a t  the thermal boundary layer 
on a heated flat plate (Elder 1968; Robinson 1976). 

4. Theoretical arguments 
Dimensional reasoning indicates those parameters of a two-layer system that may 

influence the heat and salt fluxes through the ‘diffusive’ interface in a porous medium. 
There are the individual contributions (aAT and PAS) of temperature and salinity to 
the total density difference (Ap)  between layers and there are the macroscopic mole- 
cular diffusivities (K, and D )  that apply to the diffusion of heat and solute through 
distances much greater than the scale of individual pores. The fluxes may also be 
dependent upon the parameters (R, and B)  of the layer convection and upon the 
porosity, 8, of the medium. The dimensionless interfacial heat flux may be expressed as 

(3) N u  = g(Rp, Rm, B, Tm, €1 
where Nu is a Nusselt number, Rp = PAS/aAT and r, = D / K ,  is the ratio of molecular 
diffusivities appropriate to the saturated medium. 
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Only the limit B + co will be considered. As in the viscous fluid case (Turner 1966) 
a dimensionless heat flux may be defined by comparing the interfacial flux, FT, with 
the heat flux, FP, that would flow if the interface was replaced by a thin, conducting 
and impermeable solid plane. Then the following postulate leads to a simplification 
of (3) that will later be tested experimentally: for given porosity and molecular 
diffusivities, the nature of the interface and the transport of salt alter the heat- 
transporting properties of the convection in each layer only by altering the tempera- 
ture boundary conditions for that layer. An equivalent statement is that salinity 
gradients are important only within the interface and that the interface behaves as a 
rigid boundary. According to (2) this postulate implies that the flux through each 
convecting layer behaves as FTCC H-*. If the system is in a steady state, F;. is the flux 
through the interface. Since (2) also gives the ‘solid plane’ flux, FP, the dimensionless 
heat flux is independent of layer depth and must take the form 

-F$ = = f (RP,7,,e). (4) 

With fixed molecular properties and a given porous material the dimensionless heat 
flux varies only with the density ratio, Rp. 

The ratio of buoyancy (density) fluxes 

r = /?Fs/aFT (5) 

should be a function of those parameters included in (3). We also know that the 
buoyancy flux BFs due to solute is carried through the mixed layers by the thermally 
driven convection. However, there is no justification for us to assume that Fs and F;, 
will take the same dependence upon the thermal Rayleigh number (or the depth 
scale H). Therefore, a dependence of the flux ratio, r,  upon the Rayleigh number, 
R,, cannot be dismissed. 

On the other hand, it is possible to estimate both the ratio of buoyancy fluxes and 
the dimensionless heat flux by considering the boundary-layer flow at the interface 
edge. If we assume that the porous medium convection is of the highly unsteady form 
visible in figure 1, then a direct analogy can be drawn with the ‘diffusive ’ interface in 
a viscous fluid. In  both cases the interface is bounded by intermittent, high-Rayleigh- 
number convection. As in the model of Linden & Shirtcliffe (1978), we will describe 
the interface itself in terms of a central region through which all transport is by mole- 
cular diffusion and outer regions which couple the diffusion to the convection. The 
latter region is not understood for the real porous medium cam. This is because the 
boundary-layer flows in the heat-salt experiments (reported in $6) form a cellular, 
though still unsteady, structure. There are then horizontal property variations at the 
interface edges and horizontal flow in the boundary layers. In  the absence of a simple 
model to describe the influence of slowly varying spatial inhomogeneities upon the 
interfacial fluxes, we will consider only temporal variations of T, S and p. 
In order to find an estimate of the flux ratio, we use the condition that the vertical 

density gradient is continuous throughout the interface. That is, all of the buoyant 
fluid in the boundary layer and only this buoyant fluid takes part in convection. This 
requires equal and opposite density steps due to T and S at the interface edges. 
Idealized profiles of aT, /I8 and p immediately after buoyant elements have been 
cjected from the boundary layclw are sketched in figure 3. There are steps BaST and 

. 
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FIGURE 3. Idealized profiles of uT, /3S and density, p ,  through a ‘diffusive’ interface with inter- 
mittent boundary layers just before a buoyant boundary layer begins to grow. The property with 
the greatest diffusivity provides the potential energy for convection. In this diagram, Ap is the 
density difference between layers. 

$PSS at the interface edges. The existence of such steps (or at least steep gradients) in 
the Hele-Shaw flow of figures 1 and 2 is indicated by the sharp refractive index 
changes. New boundary layers are created by vertical molecular diffusion from the 
sharp steps of figure 3. The flux ratio is determined by the ratio of T and S anomalies 
in the diffusive boundary layer when it breaks away. Steps of equal magnitude 
(PSS = uST) now imply that the flux ratio is independent of the overall concentration 
differences between layers provided that h 4 ( ~ ~ t * ) f ,  where h is the interface thick- 
ness and t ,  a time scale for the intermittent convection (Linden & Shirtcliffe). For two 
solutes, integration of the error function diffusion profiles outside the interface edge 
yields r 2: d, where T = K ~ / K ~  is the ratio of diffusivities in the fluid. This result, and 
the arguments leading to it, are identical with those of the viscous fluid case. 

The ratio of salt and heat fluxes through an interface in a porous medium is influenced 
by two additional factors. First, a macroscopic diffusion coefficient D for solute must 
be defined to include the tortuosity F o f  paths through the fluid within the medium 
(see De Wiest 1969). For a homogeneous, isotropic medium we can write D = F K ~ ,  
where K~ is the solute diffusivity in the fluid. Experiments with beds of glass beads have 
given 9-z $ (see Saffman 1960). As before, the ratio of diffusivities for solute and heat 
is 7, = D/K,. 

Second, heat travels through both solid and liquid while the solute is confined to a 
fraction 8 of the total volume. The coefficient D describes the macroscopic rate of 
diffusion of solute through a saturated medium. Hence the solute buoyancy anomaly in 

the diffusive boundary layer is given by e PS(z,t)dz, where z is the vertical co- 

ordinate and z = z1 at the (upper) edge of the interface. The buoyancy fluxes of solute 
and heat through the intermittent boundary layer are in the ratio 

la: 

PS(Z, t )  d z / /  aT(z, t )  dz. r = 
a1 
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This becomes (see Linden & Shirtcliffe) 
r -N e&. 

This flux ratio is a constant, independent of Rp and R,, for a given medium and fixed 
molecular properties. 

To continue the model for the ‘diffusive ’ interface, the ratio (6) may be equated to 
the ratio of diffusive buoyancy fluxes down T and S gradients through the interface 
centre. Provided that h 4 ( ~ ~ t * ) 8 ,  these gradients are steady and close to linear. Then 

r = - (  SD PAS-PSS ) 
K, aAT-a8T * 

(7) 

From (7) and the condition PSS = aST, the temperature step at the interface edge 
becomes 6T 1 - (m,/r) R, 

A T -  1-erJr  
- N  

Equation (8) has been written in terms of r ,  which may be found empirically or from 
( 6 ) ,  to facilitate comparison with experiments. 

The flux of heat through the interface can now be estimated. Note that the total 
effective temperature drop across each convecting layer must be equal to the (idealized) 
temperature step, F T ,  at the interface edge. The fluid that replaces ejected buoyant 
fluid at  the upper interface edge (shown by the profiles of figure 3) is the coldest fluid 
in the upper convecting layer. This fluid is then heated through an amount BST before 
joining an upward-moving plume. In  the cellular motions at  only moderate Rayleigh 
numbers (discussed in $5  6 and 7) $ST becomes the horizontal temperature difference 
between plumes. However, it is not clear how the model predictions are influenced by 
the observed horizontal property variations. 

The transport equation (2) is again assumed to describe the heat flux through purely 
thermal convection. Then our earlier hypothesis (which stated that salinity gradients 
are only important within the interface and that the edge of the interface behaves as 
a rigid boundary) can be used to express the thermal buoyancy fluxes in the form 
aF, = (gk/v)3 (K,/H)) (4aST)t and aFP = (gk/v)) (K,/H)* (aAT)t. The dimensionless 
heat flux becomes 3’; = (ST/2AT)% or, using (8), 

The above discussion indicates that the role of four parameters must be studied in a, 
complete experimental investigation of the ‘diffusive ’ interface in a porous medium. 
The experiments described in 3 5 are a study of the set Rp, R,,, and 7, only, but the 
porosity 6 is only expected to be important in the manner of (6). Relations (G), (8) and 
(9) will be compared with measured fluxes and temperatures in 5 7. 

5. Laboratory experiments 
Apparatus 

Measurements were taken of fluxes through a ‘diffusive’ interface within a porous 
medium of roughly uniform glass spheres. The pore space was filled with two layers of 
aqueous sodium chloride solution. Two different boxes were used to contain the 
saturated medium itnd t% compikriso11 of t>lie lleitt flux nieasiire~iieiits froin the two boxes 
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reduced the possibility of unknown systematic errors. Both boxes had Perspex walls 
(1 cm thick) but could be heated from below and cooled from above. Box A was 30 cm 
deep with a horizontal area of 20cm x 10.6cm. Heat was supplied to its metal base 
from a hot plate to which the power supply could be controlled. The saturated medium 
was cooled by circulating water from a constant-temperature bath through a metal lid. 
Box B was a cube of 20 cm side with constant-temperature water baths providing both 
heating and cooling. The bath temperatures were controlled to & 0.02 "C while the 
water circulated (at - 50 cm3 s-l) through a maze of channels in the aluminium base 
and lid to supply vertical heat fluxes of up to 10 cal s-l. Both boxes had, in the centre 
of a tapered lid, a small hole which led up to a tube of larger diameter. This tube served 
as a reservoir of fluid for the upper layer, allowing the lid to remain in contact with the 
fluid despite the withdrawal of samples during an experiment. 

Heat-flux meters (HFM) were included in both the base and lid of box B but only 
in the base of box A. Each HFM consisted of a sheet of polypropylene 0.1 cm thick 
separating a heated (or cooled) aluminium block from an inner A1 plate (0.8 cm thick). 
The inner plate was in contact with the contents of the box. Thermistors attached 
to the A1 on each side of the insulating layer enabled the temperature difference 
to be found with an uncertainty of 0.02OC. Side-wall heat transfer was reduced to 
(3.4 f 0.2) x 10-5 cal cm-2s-1 "C-1 for box A and (1.8 & 0.1) x cal cm-8 s-l OC-' 

for box B by placing polystyrene foam on all surfaces. 
Each HFM was calibrated individually by filling the box with a known volume of 

distilled water, insulating all boundaries and then heating (or cooling) through the 
HFM while the water was stirred. The heat transfer coefficient, I' (cals-l O C - l ) ,  was 
then obtained by equating the time-integrated flux through the thermal 'resistor' to 
the sum of the heat gained by the water and the heat lost from the system. The period 
required for calibration was sufficiently short to keep the integrated side-wall losses 
to less than 2 % of the heat gained by the water. Results were corrected to account for 
the heat capacity of the Perspex walls and A1 plate. Uncertainties in l7 are thought to 
be less than 3 yo. 

Resistance thermometers were embedded in the beads in order to obtain average 
temperatures for horizontal planes near the centre of each layer. Horizontal averages 
were necessary due to the large spatial temperature variations within a convecting 
layer. Each thermometer consisted of 6m of fine insulated wire which crossed the 
width of the box at a regular spacing. The unbalanced voltage from a bridge 
circuit for each thermometer was displayed on a chart recorder and thermometers 
were calibrated before and after each experiment. A bridge supply voltage was 
chosen so that each thermometer dissipated only 4 x 10-4 cal s-l, or 0.02 yo of the 
smallest heat flux measured. A t  the same time, vertical temperature profiles through 
the fluid density interface were obtained by embedding a vertical array of six glass- 
bead thermistors near the centre of the box. These thermistors were fixed 1-6; & 0.1 cm 
from each other and the resistance of each was calibrated to within an uncertainty 
of +_ 0.02 "C. 

Withdrawal of fluid sampIes and injection of dye were achieved by mounting 
syringe needles in one wall of each box. However, a number of trial samples taken from 
different points in the medium led to a large scatter in measured salinities. Conse- 
quently, the horizontal variations within each layer were averaged by withdrawing 
fluid through six small tubes until a (mixed) volume of 1 ml was reached. The density 
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of samples was measured to within an uncertainty of less than 2 x g ~ r n - ~  a t  
25.00 & 0.01 "C with a digital precision density meter (model DMA 02C, Anton Paar 
K.G., Austria). The sodium chloride concentration, S (in grams of solute per gram of 
solution) is then given by polynomials of Ruddick t Shirtcliffe (1979). 

A two-layer system in which the property (8) with smaller diffusivity was sucrose 
and the property ( T )  with the greater diffusivity was salt was also studied in order to 
test the dependence of the flux ratio upon the ratio of diffusivities. A medium of 0.3 cm 
diameter glass beads was used in box B. Two layers of equal depth (1Ocm) were 
established, initially with AT = 126 x0 and A S  = 247 %,, and the system allowed to  
run down. In  this case both the density and conductivity of small samples were 
measured. The dimensionless sugar concentration, 8, and salt concentration, T, were 
again given by the data of Ruddick t ShirtclifFe, this time by inverting their density 
and conductivity polynomials, p(T, 8) and h(T, 8) respectively. 

The porous media 
Two bead diameters, 1 = 0.3cm and 1 = 0*6cm, were used for the thermohaline 
experiments. These, and changes of AT, allowed variations of the thermal Rayleigh 
number for the convection. Both sizes gave a porosity e = 0.38, reproducible to within 
f 0.01. The measured thermal diffisivity was K, = 2.6 x cmr 8-1, a value that is 
roughly twice that of the fluid alone and is considered to have an uncertainty of 10 %. 
The measured permeabilities are k s 9.4 x cm2 for a medium of 0.3 cm beads and 
k x 3.1 x cm2 for 0.6 cm beads. These values are reliable to within 5 yo. 

Experimental method 
To begin each experiment a two-layer salinity distribution was established in the fluid 
within the porous medium, with the upper layer initially of fresh water. It was desirable 
to achieve contact between the glms medium and inner Al plate when the lid was 
sealed into position, although there sometimes remained a fluid space about 0.1 cm 
deep. Heating and cooling were turned on and the first samples were withdrawn after 
the two layers had reached roughly constant temperatures. Thereafter the sampling 
periods varied from 3 to 20 hours. Samples were taken from the centre of each layer 
simultaneously and up to twenty 1 ml samples were taken from a single experiment. 
At most 0.1 yo of the fluid volume was withdrawn at each sampling time. 

Injection of dye allowed visualization of the cell geometries and interface position 
near the walls of the box. However, when the interface was observed to be planar, 
a more accurate determination of interface position (and therefore of layer volumes) 
could be obtained from the vertical temperature profile near the centre of the box. 
Experiments were terminated whenever fluid from one layer reached the resistance 
thermometer in the opposite half of the box either due to migration of the interface 
(see tj 6 )  or to complete overturning of the fluid. 

6. Experimental results 
The convection 

A single thermal Rayleigh number, Em, for the thermohaline systems can be defined in 
terms of the mean layer depth 8, the temperature difference A T  between average 
layer temperatures, a mean viscosity for the system, i j  = v(p ,  g ) ,  and a mean coefficient 
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FIGURE 4. Photographs of one wall of box B showing layered convection. Frame (a) was taken 
13 min after dye was injected near the right-hand wall (red in the lower layer, blue in the upper 
layer). Frame (b) was taken 110 min later when the red dye had mixed through half of the lower 
layer and blue dye was mixing through the upper layer. There are 4 cells along each of the four 
walls in each layer. R, z 2-7, a,, x 450 (experiment ( d ) ) .  
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Box 1 Symbol 

A 0.3 0 
A 0.3 A 
B 0.3 0 
B 0.3 V 
A 0.6 0 
B 0-6 
B 0.6 A 
B 0-6 v 

A 0.3 0 
K n  

510 
630-690 
510-700 
400-470 
230-260 

1620-2060 
1060-1 130 
1050-1230 
580-760 

Ru 
160 

290-330 
250-340 
110-150 
220-270 
200-360 
100- 140 
180-230 
- 

R, 
820 

1 190-1 940 
940-1700 
760-1050 
4 10-430 

1030-3320 
890-1070 
830-1240 
390-510 

TABLE 1. Rayleigh numbers for thennohaline experiments in a porous material. The bead 
diameter is 1 (centimetres). The symbols are to be referred to the figures. 

of thermal expansion, a = a(T',R) where T' and B are the mean temperature and 
salinity across the interface. In  order to calculate the Rayleigh number, the density 
ratio Rp and the buoyancy flux a P ,  the value of a = (l/p) +/aT was found from the 
polynomials presented by Ruddick & Shirtcliffe. The resulting mean Rayleigh numbers 
spanned the range 230 < srn < 2000. However, different Rayleigh numbers, R, and $, 
are appropriate to the convection in the upper and lower layers respectively. These are 
based upon the local values of a, v and H and upon an effective temperature drop 
across the convecting layer. The value of a was as much as a factor of 3 greater, and 
that of v a factor of 2 smaller, in the lower layer than in the upper layer. The effective 
temperature drop was assumed to be twice the measured temperature drop, T ,  between 
the inner A1 plates and the averaged centre of the adjacent layer. 

In  table 1 are liqted estimates of Rrn, R, and Rl for each heat-salt experiment. The 
box in which the experiment was performed and the bead diameter are also shown, 
along with a symbol that will be used to show data points in later figures. The large 
difference between the Rayleigh numbers fop individual layers explains some observed 
properties of the convection. In  figure 4 are shown photographs of one side of box B. 
The dye movements indicate that cell aspect ratios were smaller in the lower layer 
(0.2 < L / H  < 0.7) than in the upper layer (0-5 < L / H  < 1 ). Reynolds numbers (based 
on 1 )  ranged from 3 x in the lower layer to 1-2 in the upper layer. I f  the influence of 
salinity gradients within eachlayer is neglected, we can also find the thermal boundary- 
layer thickness, 6, from S/H - h'u-lR lo-'. Then 6 - 1 cm, which is larger than the 
grain size. 

Once dye became mixed throughout a layer it revealed the interface position and two 
significant observations were made. First, the interface slowly migrated upward, 
implying a net downward exchange of fluid into the lower layer. Indeed, streaks of dye 
from the upper layer could sometimes be seen in the lower layer. A similar behaviour 
was noted by Marmorino & Caldwell (1976) for the viscous fluid case. The second 
observation was that the interface was planar and horizontal at  Rp > 3 but became 
distorted when Rp < 2 (only small distortions can be seen in the photograph shown in 
figure 4b). They appeared to have a horizontal wavelength of 2L, where L is the width 
of one convection cell. Their amplitude became comparable to 2L at Rp < 1.5. A warm 
plume existed on both sides of the interface at  its highest points and cold plumes at its 
lowest points, a behaviour that is common to two-layer heat-salt systems in the 
laboratory (Griffiths 1979). 
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FIGURE 6. The measured temperature drop, T', from the inner A1 plate thermistor to the 
horizontal average near the centre of the adjacent layer, normalized by half the temperature 
drop AT between layers. Curves 2T'IAT = 1 and 2T'/AT = +(dT/AT) are shown. Symbols are 
those defined in table 1 and the points obtained simultaneously from upper and lower layers in 
box B are connected. 

Further evidence of an increased interfacial surface area is shown in figure 5,  where 
the quantity 2T'/AT is plotted against Rp. As before, T' is the measured temperature 
difference between the inner metal plate and the horizontally averaged temperature 
at the centre of the adjacent layer. Simultaneous results from the lid and baae of box B 
are connected. (There is a large uncertainty in T' as it is the difference between a 
horizontal average for the fluid temperature and a local measurement in a metal 
plate which contains significant temporal and spatial variations.) It is reasonable to 
assume that the thermal boundary layers on each side of a convecting layer are 
identical when the interface is planar. Therefore we again assume 2T' to be the tem- 
perature drop that drives convection in a layer. However, 2T' then has a maximum 
possible value of AT. On the other hand, most experiments indicate that 2T' > AT 
when Rp < 2 .  These are the density ratios at which interface distortion was observed. 

The data of figure 5 have further significance. In  obtaining the dimensionless heat 
flux (9) it was assumed that the effective temperature drop across each layer was 
#ST. For planar interfaces we now write 2T' = *ST and obtain the relation 

2T'/AT N *(ST/AT), 

where ST/AT is given by (8) and (6). The curve is plotted in figure 5 and is consistent 
with the temperature measurements at Rp > 3. These are the density ratios at which 
the interface was observed to be planar. At smaller density ratios, measurements 
obtained with the smaller bead size ( I  = 0.3 cm) lie well above the plotted curve while 



Layered double-diffwive convection in porous media 235 

30 

25 

20 

h 

g 

s 
15 

3 
10 

5 

0 
10 20 30 40 

Temperature (“C) 

Time (h) 
FIGURE 6. (a) Vertical temperature profiles through an interface and (b) temperature wereus time 
records from some of the thermistors for the same experiment (experiment (1)). The upper and 
lower points marked A in (a) and the heavy lines in (b) ere the horizontally averaged tempera- 
tures. In (a), times in hours from the beginning of the experiment are: ., 6.5; +, 11 ; x , 13; 
0, 60.5. Thermistor numbers from the top of the array are shown in (b). Despite the observed 
fluctuating behaviour, layer temperatures were constant over long periods and interface migra- 
tion is obvious. 
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FIGURE 7 (a). For legend see facing page. 

those obtained with I = 0.6cm are more consistent with the curve. More data are 
needed in order to see whether this dependence upon bead size is real. 

Vertical temperature profiles obtained from the thermistor array revealed the 
interface position while it was planar. In  figure 6(a) are shown examples of vertical 
profiles taken from the temperature record of which a part is shown in figure 6(b). The 
point measurements are also compared to the horizontally averaged layer tempera- 
tures. Temperature maxima and minima often occurred a t  the edges of an interface 
and imply the presence of unsteady convective motions. Upward migration can be 
seen and an estimate of the interface thickness, h, is possible. The quantity 

h = AT/(dT/dz),*, ,  

based on the maximum temperature gradient detected within the interface, varied 
from 3 cm at Rp = 8 to approximately 0.6 cm at Rp = 3. Fluctuating temperatures 
were characteristic of most experiments and the record shown in figure 6 (b )  illustrates 
that fluctuations were detected by both the averageing thermometers and the ther- 
mistors. This behaviour was a significant causeof scatter in the heat-flux measurements 
since the inner A1 plates did not reach a uniform temperature but partially responded 
to the local fluid temperature. Fluctuating thermal convection was detected in 
laboratory porous medium experiments by Cornbarnous & LeFur (1969), and Calta- 
girone, Cloupeau & Combarnous ( 1  97 1). 
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.FIGURE 7. The dimensionless heat flux, F$ = Fp/FP, from the porous medium experiments 
plotted against the density ratio R, = pAS/ZAT. In (a) the normalizing heat flux FP is 
found from the #-power law of (2), but in (a) from the )-power law of (1). Normalization with 
the #-power law collapses the data most efficiently, making the heat flux independent of Rayleigh 
number. 

The heat $ux 
Measurements of the heat flux, FB, through the base and lid were averaged over the 
period between salinity samples. The heat flux, FT, through the interface was then 
obtained by subtracting the expected side-wall heat loss from FB. The latter ranged 
from 6 x cal cm-2 5-1 and the rate of side-wall loss was at most 3 yo 
of the rate of heat addition through the base for tank B, but sometimes reached 25 yo 
for tank A. A further correction for interface migration was only significant when 
R, < 3, while a correction for unsteady average temperatures waa usually negligible. 
The vertical heat transport contains a contribution of 1-4 % due to the finite con- 
ductivity of the Perspex walls. For box B, the calculated interfacial heat fluxes given 
by the base and lid HFMs were always within 10 % of each other and only the mean 
of the two values will be discussed. 

In  order to find the appropriate 'solid plane' heat flux, Fp,  measured values of A T  
between layers were used in the Nusselt number relation (2). The density step ZAT 
and buoyancy flux ZFP were based on the coefficient Z = a(p,s) .  In figure 7(a)  are 
shown the resulting dimensionless heat fluxes, F$ = FT f FP. Normalizations of FT 
using both the linear Ntisselt-Rayleigh number relation and the asymptotic 3 -power 

to 3.6 x 
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FIGURE 8. The ratio r of buoyancy fluxes due to salt and heat obtained from the experiments, 
normalized to its value at a porosity of E = 1 (i.e. a viscous fluid). The experimental medium of 
glass spheres had a porosity of 6 = 0.38. The lower broken line shows the value of T; and the 
upper line (discussed in 8 7) shows its modified value when mechanical dispersion is included. 

law of (1) were also tested. The dimensionless heat fluxes using (1) are plotted in 
figure 7 (b). It can be seen that the Q-power law of (2) collapses the data for the experi- 
mental range of Rayleigh numbers. The other normalizations resulted in a much 
greater scatter of F$. No systematic errors are apparent in each experiment since the 
many experiments and the results from two boxes agree. The data show no dependence 
of the heat flux upon bead size, The simple power law that best describes the data of 
figure 7 (a)  is 

F$ = M R F ~ ,  (10) 

where M = 0.90 f 0.03 and N = 0.89 k 0.07. 

The ratio of salt and heat buoyancyjiuxes 

The mass flux of salt, FB, through the interface was calculated from the concentration 
change in the top layer between sampling times, knowing the mean depth eH, of the 
water column. A density flux BF8 was then defined in terms of the coefficient 

jl = (l/i.j) ap ( F ,  sps. 
The resulting values for the ratio of salt and heat density fluxes, divided by the 
porosity, are shown in figure 8. These data are to be compared with (6). As predicted, 
the empirical flux ratio shows little dependence upon R,,, although there is a small 
increase of r at small density ratios (RP < 3). There is no dependence upon either 
the Rayleigh number or bead size. Mean experimental temperatures of 33 "C imply 
a salt diffusivity of K* =! 2 x 10-5cm2s-1 and a diffusivity ratio of 7, = 8.2 x 
( & 15 %). Therefore 7k = 0.072 f 0.006, and this value is shown as the lower line in 
figure 8. The data give a mean value of r/ts = 0.14 f 0.03 which is twice the suggested 
value of 4. The upper broken line in the figure will be discussed in 97. 
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The salt-sugar system 
When the porous medium was saturated by a layer of salt solution above a layer of 
sugar solution, injected dye again revealed convective motions within each layer. In  
this case the motions appeared to take a much smaller aapect ratio (L/H < 0.2). The 
system ran down from an initial density ratio of R, = 1-15; to Rp = 1.90 over a period 
of 200 hours. 

In  order to find the ratio of buoyancy fluxes, r, note that conservation of mass 
requires the fluxes to satisfy the relation 

within each layer. The coefficients a and B(T, S) take local values in each layer and 
these values may be calculated from the polynomials of Ruddick & Shirtcliffe. Thus 
two different values of r can be found by substituting FT = peH(dT/dt)  into ( l l ) ,  
assuming the layer depth H to be constant, and applying the result 

= pa(i - r )  

to the upper and lower layers. Relation (12) is fitted to the data points for one experi- 
ment in figure 9. It yields a constant slope because there is only a small change with 
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time of pa( = ap/aT) in each layer. At the same time, a nonlinear equation of state 
and a variable layer depth both allow r = flPs/aF, to take unequal values in the two 
layers (Griffiths & Ruddick 1980). The mean flux ratio is r = 0.55 f 0.03, a value that 
falls close to the predicted value of 74 = 0.57 f 0.02 (remember that both components 
are confined to the fluid space in a two-solute system). 

The results that have been presented in this section are discussed in 5 7. They are 
compared with the theoretical predictions of $ 4  and with results previously obtained 
for the (diffusive’ interface in a viscous fluid. The flux ratio and dimensionless heat 
flux will be discussed individually. 

7. Discussion of experimental results 
Plus ratio 

The ratio of buoyancy fluxes will be considered first. Over most conditions (R, not too 
close to 1) the flux ratio is independent of all parameters tested in the laboratory 
except the ratio of diffusion coefficients. The value of r for a two-solute ‘diffusive’ 
interface in a porous medium is found to be close to 7).  A similar flux ratio, r = 0.60 
f 0.01, was found for the analogous salt-sugar interface in an unconstrained viscous 

fluid (Shirtcliffe 1973). The measured flux ratio for thermohaline interfaces in a porous 
medium also has some behaviour in common with the viscous fluid case. In  particular, 
the qualitative agreement with (6) provides some support for the description of the 
coupling between layer convection and diffusion through the interface in terms of an 
intermittent boundary-layer flow. However, there are two significant differences be- 
tween the two thermohaline systems. First, there is a rapid increase of the flux ratio at  
Rp < 2 in Turner’s (1965) experiments. In  that system, inertial fluid motions are able 
to alter the nature of transport through the density interface (Linden 1974). Inertial 
effects are negligible in the porous medium experiments. Second, the magnitude of the 
flux ratio at  Rp =- 2 is twice its estimated value for the experiments reported in this 
paper, while the ratio (r  = 0.15) for the unconstrained fluid interface is only slightly 
greater than ~ 4 (  = 0.11). A possible explanation of this difference follows. 

Viscous entrainment of non-buoyant fluid from the interface edges was suggested 
as the cause of a flux ratio greater than 78 across a viscous fluid interface (Linden & 
Shirtcliffe 1978). However, another process can increase the transport of solute within 
a porous material. In the experiments reported in 5 5 the observed convectionvelocities, 
U (averaged between layers), indicate PBclet numbers of 50 < u l / K ,  < 200 and 
0.5 < Ul/K,  < 2. As before, 1 is a characteristic pore dimension. Thermal gradients 
are therefore small but salinity gradients may be high within individual pores. 
Mechanical dispersion can therefore significantly increase the effective diffusion 
coefficient of the solute. Dispersion experiments in a bed of glass spheres (see Saffman 
1960) suggest an effective diffusion coefficient at  the above P6clet numbers of D* N 4 ~ ,  
(but no mechanical dispersion of heat). Then D* replaces D = &K* in (6). The modified 
diffusivity ratio gives 7 i  N 0.18 which is shown as the upper line in figure 8. It forms 
a good upper bound for the data and indicates that, if we accept the arguments leading 
to (6), this form of (entrainment’ at the interface edge can explain the observed flux 
ratio. 
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Heat Jlux 

The dimensionless heat-flux data of figure 7 (a) show no dependence upon the Rayleigh 
number of the convection or upon bead size. These data have been fitted by the curve 
(lo), which reveals a behaviour similar to that of Hupprt 's (1971) approximation to 
the dimensionless heat flux through a viscous fluid interface: 3'; = 3.8Ri2. In  the 
porous medium caae, though, we have already seen that the fluid convection is unable 
to supply energy to inertial motions at the interface and, as a result, mechanical 
mixing is negligible. This explains the only significant difference between the two 
empirical heat-flux curves: the interfacial heat flux E;. exceeds the 'solid plane' heat 
flux as Rp + 1 in the unconstrained fluid, while the heat flux through a 'diffusive' 
interface within the laboratory porous media is always less than the appropriate 
'solid plane ' flux. 

It is also known that T8 > 1 in the unconstrained two-solute system when Rp + 1 
(Shirtcliffe 1973). In this caae, the larger salt and sugar fluxes might be attributed to an 
increased interfacial surface area produced by inertial fluid motions that distort the 
density interface. No breaking waves or penetration of the interface by 'thermals' are 
observed in such a system (possibly owing to a zero buoyancy flux through the top and 
bottom of the laboratory system). This is consistent with the observation that salt and 
sugar buoyancy fluxes remain in a constant ratio as Rp --f 1. In  a similar way the layer 
convection in both thermohaline systems visibly distorts the density interface (though 
not by inertial forces in the porous medium case) and the resulting increased surface 
area will again influence the heat and salt transport. 
To assess the influence of interface bending upon the vertical heat flux in the porous 

medium case, an upper limit for the surface area change can be estimated. Assume all 
distortions to be sinusoidal in two dimensions (a reasonable approximation to labora- 
tory observations), with an amplitude 11 and wavelength 2L. When 11 < L it can be 
shown that such a surface has an area A given by 

where A, is the cross-sectional area of the box. 
The amplitude of the distortion is determined by a combination of horizontal 

property variations (5"") in each convecting layer and the pressure gradient (APIL) 
necessary to force horizontal flow between up- and down-going plumes. Here, T" is 
defined as the mid-layer departure of T from its horizontal mean value (5"* - & . $&"). 
Horizontal salinity variations are neglected since the flux ratio r N 0-05< 1.  At this 
stage it is assumed that the interface distortion does not itself greatly influence the 
convection. To find a maximum distortion for given average layer properties the cell 
configuration sketched in figure 10 is considered, with flow along the interface assumed 
to be quasi-horizontal. From Darcy's law, the horizontal flow velocity is 

k AP 
U N  -- 

pv L ' 
and the corresponding pressure difference between plumes is 
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FIGUXE 10. A sketch of the convection geometry that would give the maximum interface 

curvature. Cells in the upper and lower layers are of the same horizontal dimension. 

where Ap is the difference between average layer densities. In  order to be consistent 
with the use of (2), the horizontal boundary-layer velocity and vertical plume tem- 
perature for thermal convection are given by 

aT" 2: (aST/8) (R,/40)-), U N l l (~ , /H)  (Rm/40)%. (16)  

These relations are obtained from the analysis of Robinson & O'Sullivan (1976) end, 
although the Rayleigh number dependence may not be accurate, they lead to useful 
qualitative predictions. From (14)-( 16) the amplitude becomes 

where q5 = $[(1 -&Rp)/(1 -&)I (Rm/40)-*. The fractional increase of interface axe& 
may now be found as a function of Rp and R, by substituting (17) into (13). Then an 
upper bound to the heat flux is obtained by assuming that FT is increased above that 
through a planar interface by this same fraction. Of course, the full increase cannot be 
realized as one boundary of each convecting layer remains planar. 

In  figure 11 are reproduced the dimensionless heat-flux data of figure 7 (a). These are 
compared to the heat flux predicted by (8) and (9 )  (solid line) using the empirical value 
of r and to the modification of this prediction due to the surface-area correction (broken 
lines). Equation (9) provides an excellent description of the data for Rp > 3, an 
agreement which indicates that the equation is based upon the correct temperature 
drop (YT) across each layer. 

A comparison between the porous-medium results and the dimensionless heat-flux 
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FIGURE 11. Dimensionless heat-flux data of m e  7 (a) for the ‘diffusive’ interface in amedium of 
glass beads, compared with the prediction of equations (8) and (9) (solid curve). The broken 
 curve^ are upper bound estimates including the influence of interface curvature for several 
Rayleigh numbers. 

data for the viscous fluid interface is useful here. The data of Turner (1965) for a heat- 
salt interface are shown in figure 12.  In place of equation (9), the solid curve is this time 

and the analogous relation to (6) is 8T/AT = (1 -&$)/(I -d). Equation (18) is 
obtained by writing the Nusselt number relation for high Rayleigh number thermal 
convection of a viscous fluid in each layer in the form ~ F ; , H / ( K ~ ~ T )  = cR*. The ‘solid 
plane’ Nusselt number is P P H / ( ~ T A T )  and the effective temperature drop is again 
assumed to be 48T. The broken curve is that given by the complete interface model of 
Linden & Shirtcliffe, and is based on a quantitative description of the boundary-layer 
instability. The agreement between the two curves and the data of figure 12 indicates 
the usefulness of our simple description of the layer convection in terms of previous 
knowledge of the heat flux through purely thermal convection. However, it should be 
remembered that the assumption of highly unsteady, intermittent convection in a 
porous medium overlooks the existence of plumes which occupy a large fraction 
of a layer volume and the presence of significant horizontal T and S variations 
along the interface edge. Such inhomogeneities made it necessary to define AT as 
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FIQURE 12. Dimensionless heat-flux results for theviscous fluid 'diffusive' interface (from Turner 
1965). The broken curve is that predicted by Linden & Shirtcliffe (1978). The solid curve is 
equation (18) and is the result that corresponds to the solid curve shown in figure 11 for the 
porous medium caae. Both curves provide a good description of the data for R, > 3. 

the difference between mid-layer horizontal temperature averages in the experiments. 
It is not clear how this is consistent with the definition in 8 4, where AT is again the 
difference between average layer temperatures but where the buoyant fluid (warm 
plumes) occupies a negligible volume of a convecting layer. 

From figures 11 and 12 we conclude that, when R, > 3, the interfaces in both types 
of layered thermohaline convection act as rigid boundaries. Further, the upward flux of 
solute does not significantly reduce the heat-transporting capacity of the thermal 
convection in each layer. This was to be expected as only 5 yo of the potential energy 
released from the temperature field in the porous medium experiments is used to raise 
the centre of gravity of the salinity field. 

At smaller interfacial stabilities, R, < 3, the curves on figure 11 show that the 
estimated upper bounds for the influence of interface distortion can reconcile relation 
(9) with the measured heat fluxes. These are also the conditions under which the inter- 
face was observed to be non-planar and underwhich2T' > AT, For Rayleigh numbers 
in the range 200 < Ern < 1600, the estimated amplitude of the interface distortions 
reaches y N BL at density ratios in the range 2-3 < R, < 3. This too agrees with dye 
observations. At  still lower density ratios the density step, Ap, across the interface 
decreases more rapidly than the density anomaly between vertical plumes, causing 
yIL --f 00 at R, N 1.1. For R, < 1.1 it is predicted that two layers cannot exist in- 
definitely. Within the box, though, rigid top and bottom boundaries will reduce the 
interface distortion. Further, even when measurements showed that ZT' > AT, the 
normalized heat flux P$ did not reach unity. This implies that the heat-transporting 
capacity of the layer convection at  low density ratios was reduced by either salt 
transport or interface curvature. 
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FIQURE 13. An idealized model for the Wairakei geotheml system. The motion of groundwater 
near a hot plume is illustrated. A denser layer of hot saturated brine insulates the heat 
source and a 'diffusive' thermohaline interface separates the brine from the groundwater 
(broken line). Heat ( H )  and salt (8) are supplied from the magma body and released at the 
ground surface. 

8. Geothermal systems 
Some implications of double-diffusive convection within the Earth's crust are best 

discussed in terms of an example. McNabb (1975) has already suggested the possible 
existence of two fluid layers in the Wairakei geothermal field of New Zealand. He 
suggests that saline magmatic fluid released from the 'hot plate' beneath the hydro- 
thermal system may boil and give rise to a fluid saturated with solutes. As most of the 
circulation (5-10 km deep) consists of dilute (2%,) groundwater, the hot, saturated 
brine (200%,) is more dense and may form a layer at the bottom. This would then 
insulate the groundwater from the high-temperature regions exceeding 400 "C. 

The model system suggested by McNabb, and to which the ideas that have been 
developed in this paper will be applied, is illustrated in figure 13. While the groundwater 
does not reach temperatures greater than 300 "C, the lower boundary is thought to be 
close to 700 "C. This leaves a temperature drop of about 400 "C which must be accom- 
modated across the proposed brine layer and its interface with the groundwater. If we 
assume that a temperature drop of 200°C is available to drive convection within a 
brine layer that is lo4 cm deep, the values k N 10-'0cm2 (McNabb, Grant & Robinson 
1975), aAT N 10-1, Y N 10-3cmZs-1 and K, = 3 x 10-3~m~s-1 imply a thermal 
Rayleigh number of R, N 30. Therefore, the groundwater circulation may well be 
supplied with heat and salt through a lower convecting layer of brine and diffusion 
through a stable interface. The groundwater circulation has H N 5 km and R, N lo3. 
The system can remain in a steady state due to expulsion of heated groundwater at the 
surface, intake of fresh meteoric water and a continuous input of magmatic fluid from 
below. 
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The buoyancy fluxes due to both heat and salt through the brine/groundwater inter- 
face may be estimated from measured quantities. The geothermal field (150 x 20 km) 
consists of many hot plumes of area 10km2. Each plume carries 5 x 107cals-1 and 
about 400g s-l of salt at a concentration of 1 %, to 2%,. Using the conditions near the 
postulated brine/groundwaterinterface (500 bars, 500 “C, loo%,; a w 10-8 OC-1, /3 - 2, 
Gp N 2 calg-l “C-l) the ratio of salt to heat buoyancy fluxes becomes, within a factor 
of 3, /lF8/aFT N 0.03. Any effects of boiling are neglected. 

A flux ratio can also be predicted from (6) if both layers are convecting, since the 
postulated density interface will be of the ‘diffusive’ kind. McNabb has estimated the 
diffusion coefficient for sodium chloride in water at the conditions of interest to be 
K, -N 2 x 10-4 om2 s-1. The estimated porosity is E = 0.2 _+ 0.1. Then 

r = c(#K,/K,)* 2: 0-04 0.02, 

which is equal to the ‘observed ’ flux ratio to well within the uncertainty of either value. 
The presence of a ‘ diffusive’ interface would also have implications for the heat flux 

through the geothermal system. Individual contributions to the density step in the 
present example are estimated to be aAT - 0.1 and PAS N 0-4, giving a density ratio 
of Rp - 4. From the resuIts of laboratory experiments reported in 56 the heat flux 
through the system would be approximately & of the ‘solid plane’ flux based on the 
temperature difference, AT,  between layers. Furthermore, AT is less than the total 
temperature drop across the system (and the ‘solid plane’ heat flux is roughly pro- 
portional to a 8 or Q power of the temperature drop across a convecting layer). It must 
therefore be concluded that the heat flux through an interface, assuming a fixed 
medium, would be an order of magnitude less than that given by direct thermal con- 
vection between the ‘hot plate’ and the surface. This suggests that permeability 
estimates based upon heat flow observations (McNabb et al.) might be nearly an order 
of magnitude too small since the calculations have assumed simple thermal convection. 
The thermal Rayleigh numbers for each layer would then be greater. More significantly, 
the layered convection suggested here would decouple the salt flux into the ground- 
water from the magmatic supply of heat and salt. A ‘diffusive’ interface maintains, 
but allows interaction between, two different chemical and thermal environments. 

9. Conclusions 
Experiments with a two-layer convecting system in a Hele-Shaw cell and a porous 

medium of glass spheres indicate that a thin ‘diffusive’ density interface is maintained 
against diffusive thickening, despite the lack of inertial forces. The ratio of salt to heat 
buoyancy fluxes through the interface in the laboratory experiments is given to a 
reasonable approximation by r = m t ,  where c is the porosity and T, is the appropriate 
ratio of diffusion coeficients. For a salt-sugar interface, the ratio of buoyancy fluxes 
is close to 74, where T is the ratio of diffusion coefficients in the fluid. 

The heat flux has also been measured and compared with previous measurements of 
that through the analogous viscous fluid interface. Although it is found that bending 
of the interface due to horizontal property variations in each convecting layer causes 
an increased flow of heat through the two-layer system, the heat flux in the porous 
medium case does not reach the ‘solid plane’ value. It is inertial fluid motions which 
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allow this value to be exceeded in the unconstrained fluid. In both cases the heat flux 
at larger density ratios (R, = /3AS/aAT > 3) can be predicted by considering the 
interface edge to be a rigid, conducting boundary and assuming that the stabilizing 
property is only important within the interface. The porosity and the thermal con- 
ductivity are important properties of the solid medium: the ratio of salt to heat 
buoyancy fluxes is proportional to the porosity and the flux of heat through the 
interface is determined by thermal diffusion through the saturated medium. 
An application of these results to a simple two-layer model of the Wakakei geo- 

thermal system predicts a ratio of salt and heat fluxes which is consistent with the 
estimated real value. The postulated presence of a ' diffusive' thermohaline interface 
is also able to explain other characteristics of the groundwater convection system. 

This work was carried out at the Research School of Earth Sciences, The Australian 
National University. I thank Professor J. S. Turner and Dr A. McNabb for helpful 
discussions. 
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